ИСТОРИЯ
НОРМАТИВНЫЕ АКТЫ

П.Н. Афонин. «Информационные таможенные технологии»

Кольцевая топология (рис. 61, б) характеризуется тем, что информация по кольцу передается, как правило, только в одном направлении. Если компьютер распознает данные как «свои», то он копирует их во внутренний буфер. Как последовательная конфигурация кольцо уязвимо в отношении отказов: выход из строя какого-либо сегмента кабеля приводит к прекращению обслуживания всех пользователей. Защита от повреждений или отказов обеспечивается либо замыканием кольца на обратный (дублирующий) путь, либо переключением на запасное кольцо. И в том, и в другом случае сохраняется общая кольцевая топология.

Кольцо представляет собой удобную конфигурацию для организации обратной связи — данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому узел «кольцо» может контролировать процесс доставки данных адресату. Часто это свойство кольца используют для тестирования связности сети и поиска узла, работающего некорректно. Для этого в сеть посылаются специальные тестовые сообщения.

В случае применения звездообразной топологии (рис. 61, в) каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети. В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество данной топологии перед общей шиной — существенно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. К недостаткам топологии звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой.

Иерархическая топология (рис. 61, г) представляет собой более развитой вариант структуры локальной сети, построенной на основе общей шины. Иерархическое дерево образуется путем соединения нескольких шин с корневой системой, где размещаются самые важные компоненты локальной сети.

В то время как небольшие сети, как правило, имеют типовую топологию — звезда, кольцо, общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией (рис. 62).

6.1.4. Организация совместного использования линий связи

В вычислительных сетях используются как индивидуальные линии связи между компьютерами, так и разделяемые, когда одна линия связи попеременно используется несколькими компьютерами. В случае применения разделяемых линий связи возникает комплекс проблем, связанных с их совместным использованием, который включает как чисто электрические проблемы обеспечения нужного качества сигналов при подключении к одному и тому же проводу нескольких приемников и передатчиков, так и логические проблемы разделения во времени доступа к этим линиям.

Классическим примером сети с разделяемыми линиями связи являются сети с топологией «общая шина», в которых один кабель совместно используется всеми компьютерами сети. Ни один из компьютеров сети в принципе не может индивидуально, независимо от всех других компьютеров сети, использовать кабель, так как при одновременной передаче данных сразу несколькими узлами сигналы смешиваются и искажаются. В топологиях «кольцо» или «звезда» индивидуальное использование линий связи, соединяющих компьютеры, принципиально возможно, но эти кабели часто также рассматривают как разделяемые для всех компьютеров сети, так что, например, только один компьютер кольца имеет право в данный момент времени отправлять по кольцу пакеты другим компьютерам.

Существуют различные способы решения задачи организации совместного доступа к разделяемым линиям связи. Внутри компьютера проблемы разделения линий связи между различными модулями также существуют — примером является доступ к системной шине, которым управляет либо процессор, либо специальный арбитр шины. В сетях организация совместного доступа к линиям связи имеет свою специфику из-за существенно большего времени распространения сигналов по длинным проводам, к тому же это время для различных пар компьютеров может быть различным. Из-за этого процедуры согласования доступа к линии связи могут занимать слишком большой промежуток времени и приводить к значительным потерям производительности сети.

Несмотря на все эти сложности, в локальных сетях разделяемые линии связи используются очень часто. Этот подход, в частности, реализован в широко распространенных классических технологиях Ethernet и Token Ring. Однако в последние годы наметилась тенденция отказа от разделяемых сред передачи данных и в локальных сетях. Это связано с тем, что за достигаемое таким образом удешевление сети приходится расплачиваться производительностью.

Сеть с разделяемой средой при большом количестве узлов будет работать всегда медленнее, чем аналогичная сеть с индивидуальными линиями связи, так как пропускная способность индивидуальной линии связи достается одному компьютеру, а при ее совместном использовании — делится на все компьютеры сети. Часто с такой потерей производительности мирятся ради увеличения экономической эффективности сети. Не только в классических, но и в совсем новых технологиях, разработанных для локальных сетей, сохраняется режим разделяемых линий связи. Например, разработчики технологии Gigabit Ethernet, принятой в 1998 г. в качестве нового стандарта, включили режим разделения передающей среды в свои спецификации наряду с режимом работы по индивидуальным линиям связи.

При использовании индивидуальных линий связи в полносвязных топологиях конечные узлы должны иметь по одному порту на каждую линию связи. В звездообразных топологиях конечные узлы могут подключаться индивидуальными линиями связи к специальному устройству — коммутатору. В глобальных сетях коммутаторы использовались уже на начальном этапе, а в локальных сетях — с начала 90-х гг. Коммутаторы приводят к существенному удорожанию локальной сети, поэтому пока их применение ограничено, но по мере снижения стоимости коммутации этот подход, возможно, вытеснит применение разделяемых линий связи. Необходимо подчеркнуть, что индивидуальными в таких сетях являются только линии связи между конечными узлами и коммутаторами сети, а связи между коммутаторами остаются разделяемыми, так как по ним передаются сообщения разных конечных узлов (рис. 63).

В глобальных сетях отказ от разделяемых линий связи объясняется техническими причинами. Здесь большие временные задержки распространения сигналов принципиально ограничивают применимость техники разделения линии связи. Компьютеры могут затратить больше времени на переговоры о том, кому сейчас можно использовать линию связи, чем непосредственно на передачу данных по этой линии связи. Однако это не относится к линиям связи типа «коммутатор—коммутатор». В этом случае только два коммутатора борются за доступ к линии связи, и это существенно упрощает задачу организации совместного использования линии.

6.1.5. Адресация компьютеров

При объединении трех и более компьютеров появляется проблема их адресации. К адресу узла сети и схеме его назначения можно предъявить несколько требований:

• адрес должен уникально идентифицировать компьютер в сети любого масштаба;
• схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов;
• адрес должен иметь иерархическую структуру, удобную для построения больших сетей. Иначе в больших сетях отсутствие иерархии адреса может привести к большим издержкам — конечным узлам и коммуникационному оборудованию придется оперировать с таблицами адресов, состоящими из тысяч записей;
• адрес должен быть удобен для пользователей сети, а это значит, что он должен иметь символьное представление, например, Server3 или www.dsco.com;
• адрес должен иметь по возможности компактное представление, чтобы не перегружать память коммуникационной аппаратуры — сетевых адаптеров, маршрутизаторов и т. п.

Так как все перечисленные требования трудно совместить в рамках какой-либо одной схемы адресации, на практике обычно используется сразу несколько схем, так что компьютер одновременно имеет несколько адресов-имен. Каждый адрес используется в той ситуации, когда соответствующий вид адресации наиболее удобен, а, чтобы не возникало путаницы и компьютер всегда однозначно определялся своим адресом, используются специальные вспомогательные протоколы, которые по адресу одного типа могут определить адреса других типов.

Наибольшее распространение получили три схемы адресации узлов.

Аппаратные (hardware) адреса. Эти адреса предназначены для сети небольшого или среднего размера, поэтому они не имеют иерархической структуры. Типичным представителем адреса такого типа является адрес сетевого адаптера локальной сети. Такой адрес обычно используется только аппаратурой, поэтому его стараются сделать по возможности компактным и записывают в виде двоичного или шестнадцатеричного значения, например 0081005е24а8. При задании аппаратных адресов обычно не требуется выполнение ручной работы, так как они либо встраиваются в аппаратуру компанией-изготовителем, либо генерируются автоматически при каждом новом запуске оборудования, причем уникальность адреса в пределах сети обеспечивает оборудование. Помимо отсутствия иерархии, использование аппаратных адресов связано еще с одним недостатком — при замене аппаратуры, например сетевого адаптера, изменяется и адрес компьютера. Более того, при установке нескольких сетевых адаптеров у компьютера появляется несколько адресов, что не очень удобно для пользователей сети.

<<   [1] ... [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] ...  [66]  >> 


Контактная информация: e-mail: info@tkod.ru   


Rambler's Top100Rambler's Top100 Яндекс цитирования Все о таможне